Thursday, February 26, 2015

Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) "Sea Hunter


  • Home
  • Blog

Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) "Sea Hunter"

ACTUV Model at Special Operations Forces Industry Conference 2014.

http://www.naval-technology.com/videos/2079654944001.html
Leidos Anti-submarine Warfare Drone Surrogate Completes Voyage
26 January 2015 - Leidos announced today that its prototype maritime autonomy system for the Defense Advanced Research Projects Agency(DARPA)'s Anti-Submarine Warfare Continuous Trail Unmanned Vessel (ACTUV) program recently completed its first self-guided voyage between Gulfport and Pascagoula, Mississippi. 
The prototype maritime autonomy system was installed on a 42-foot work boat that served as a surrogate vessel to test sensor, maneuvering, and mission functions of the prototype ACTUV vessel. ACTUV seeks to develop an independently deployed, unmanned naval vessel that would operate under sparse remote supervisory control and safely follow the collision avoidance "rules of the sea" known as COLREGS.
Controlled only by the autonomy system, and with only a navigational chart of the area loaded into its memory and inputs from its commercial-off-the-shelf (COTS) radars, the surrogate vessel successfully sailed the complicated inshore environment of the Gulf Intracoastal Waterway. During its voyage of 35 nautical miles, the maritime autonomy system functioned as designed. The boat avoided all obstacles, buoys, land, shoal water, and other vessels in the area – all without any preplanned waypoints or human intervention.
While Leidos continues to use the surrogate vessel to test ACTUV software and sensors, the company is continuing construction of Sea Hunter, the first ACTUV prototype vessel, in Clackamas, Oregon. Sea Hunter is scheduled to launch in late fall 2015 and begin testing in the Columbia River shortly thereafter.

Leidos Completes As-Sea Testing of Prototype Robotic Sub Hunter
18 November 2014 - Reston, Virginia-based Leidos completed a total of 42 days of at-sea demonstrations of the prototype maritime autonomy system designed to control all of the maneuvering and mission functions of the Defense Advanced Research Projects Agency's (DARPA) Anti-Submarine Warfare Continuous Trail Unmanned Vessel (ACTUV).  Using a 32-foot work boat as a surrogate vessel, Leidos installed autonomy software and sensors to mimic the configuration intended for an eventual full-size ACTUV prototype.
Manned vessels are obliged to obey a set of navigation rules published by the International Maritime Organization.  Generally referred to as COLREGS (collision regulations), those rules determine in the event of an encounter between vessels, which vessel has the right of way (the "stand on" vessel) and the appropriate behavior for both the "stand on" and "give way" vessel to avoid a collision.
The Leidos strategy to evaluate the prototype ACTUV autonomy system for COLREGS compliance includes both simulation and at-sea testing.  The team has completed approximately 26,000 simulation runs of the system.  Testing of COLREGS involves the ACTUV surrogate and one interfering vessel in a variety of meeting, crossing, overtaking and transit scenarios in both simulation and on the water test events. 
During a recent on-the-water test event, the surrogate boat autonomously navigated through narrow channels avoiding navigation aids and submerged hazards. The boat safely avoided surface ships it encountered along the route, satisfying COLREGS requirements in completely unscripted events.
During 42 days of at-sea testing that included 101 individual scenarios, the autonomy system directed course and speed changes of the surrogate vessel to stay safely outside a 1-km standoff distance from the interfering vessel.  The test program demonstrated the ability of the ACTUV autonomy system to successfully maneuver and avoid collision with another vessel and paves the way for follow-on testing involving multiple interfering contacts and adversarial behaviors of interfering vessels.
While continuing to use the surrogate vessel to test ACTUV software and sensors, construction of Sea Hunter, the first ACTUV vessel, continues at Christensen Shipyard in Clackamas, Oregon.  Sea Hunter is scheduled to launch in late summer 2015 and begin testing in the Columbia River shortly thereafter.
Navy Anti-submarine Warfare Drone Begins Construction
7 July 2014 - An autonomous unmanned vessel designed to track quiet diesel-electric submarines spanning miles of ocean depths for months at a time with minimal human input is now under construction and is expected to set sail for testing in 2015. Leidos (formerly SAIC), has begun construction on ACTUV (Autonomous Continuous Trail Unmanned Vessel) under a Defense Advanced Research Project Agency (DARPA) program for the design, development, and construction of a vessel originally conceived for an anti-submarine warfare mission.
"ACTUV's advanced sensor technology should allow for continuous surveillance which, combined with the vessel architecture and design, is expected to provide autonomous safe navigation supporting Navy missions around the world," said Leidos Group President, John Fratamico.
ACTUV carries other sensors and mission packages designed to allow it to conduct a variety of Intelligence, Surveillance and Reconnaissance and other alternate missions. With situational sensors that can ensure safe navigation, the ACTUV trimaran has electro optics, long range and short range radar.
"A cross-disciplinary Leidos team leveraged insights and innovation from across the organization to develop the concept of the autonomous unmanned vessel. It would help keep our troops out of harm's way and provide capability in more harsh environmental conditions for a longer period of time," added Fratamico.
Maritime and hydrodynamic engineers designed the platform, and scientists and experts designed autonomy for safe navigation, status and health reporting, and sensor control and processing. Analytics experts programmed the logic for identifying other vessels and predicting their behavior.
Leidos received direction to start construction of the ACTUV from DARPA Program Manager Scott Littlefield at the conclusion of a Production Readiness Review held in February.  Christensen Shipyard, Ltd. (CSL), is constructing ACTUV in Vancouver, Washingtonusing non-traditional composite structures and modular construction techniques under supervision of Leidos and Oregon Iron Works (Clackamas, Oregon).  CSL employs a lean manufacturing process with parallel work flow to complete ACTUV construction in approximately 15 months.  ACTUV is scheduled for launch on the Columbia River in 2015.

SAIC Awards OpenClovis ACTUV Contract 
20 March 2013 - OpenClovis Solutions, Inc., has signed a contract with SAIC (Science Applications International Corporation) to support the development of DARPA's Anti-Submarine Warfare Continuous Trail Unmanned Vessel (ACTUV) project with the SAFPlus platform.
The ACTUV program is intended to advance unmanned maritime system autonomy to enable independently deploying systems capable of missions spanning thousands of kilometers of range and months of endurance under a sparse remote supervisory control model. This includes autonomous compliance with maritime laws and conventions for safe navigation, autonomous system management for operational reliability, and autonomous interactions with an intelligent adversary.
"SAIC is pleased to work with OpenClovis in the development of our ACTUV system," said Mr. Robert McCummins, Engineering Manager, at SAIC. "As maritime systems continue to become more complex and demanding, it is critical that innovative solutions such as SAFPlus is used to achieve cost-effectiveness without compromising the quality of the program."
OpenClovis' SAFPlus, in conjunction with SAIC’s ACTUV project, aims to accomplish this very task. SAFPlus is the only HA solution on the market that supports the Real-time Operating System and Linux hybrid platform, which allows for real-time embedded performance on top of a stable Linux platform. The company is also the only provider on the market that provides a suite of application design and development tools, and is renowned for its best-in-class technical support and overall expertise.
"We are thrilled to have this opportunity," said V.K. Budhraja, CEO, OpenClovis. "The project looks to expand the horizons of what can be achieved in unmanned systems, and we believe that the technology being developed will yield enormous benefits for the future. Our ability to provide robust, adaptable, and reliable software with great follow-through on the technical support end has paid great dividends for customers in the past, and we are confident that our work with SAIC will achieve similar success."
The OpenClovis SAFPlus Platform consists of an extensive set of management software modules running on a distributed, model-driven core infrastructure, and is aligned with the Service Availability Forum (SA Forum) Application Interface Specifications for High Availability. Modules may be selected to best match the application and platform requirements. OpenClovis SAFPlus can be distributed across blades, shelves, and even racks, creating a seamless high availability platform and system management environment across heterogeneous network element building blocks. 

Raytheon Awarded Subcontract for ACTUV Sonar
13 March 2013 - Raytheon has been awarded sub-contract by SAIC to supply its Modular Scalable Sonar System (MS3) as the ACTUV's primary search and detection sonar.  MS3 is a medium-frequency hull-mounted sonar capable of active and passive search, torpedo detection and alerts, and small object avoidance.

SAIC Reveals New Details on ASW Drone
21 December 2012- Science Applications International Corporation (SAIC) has released an updated promotional video revealing new details about the Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV).  More here.

Insights into Unmanned ASW
By Scott Cheney-Peters
24 August 2012 - Last week the U.S. government’s defense technology innovator, DARPA, awarded Science Applications International Corporation (SAIC) a $58M contract to develop the next phases of its Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vehicle (ACTUV) technology demonstrator. Besides a fine example of the DoD’s love of nested acronyms, the ACTUV program provides a peek into the promises and challenges of the future of unmanned ASW. 
It’s important to note that note that the award is for a technology demonstration, not a program of record. The ACTUV will help the Navy mature technologies useful for future capabilities but is not expected to enter active fleet service itself. According to DARPA’s ACTUV website, the first, completed phase 
"refined and validated the system concept and associated performance metrics, completing risk reduction testing to inform program risks associated with submarine tracking sensors and maritime autonomy.”
SAIC is tasked with phases 2-4, specifically to “design a vessel (phase 2); build a vessel (phase 3) and test the vessel (phase 4). Operational prototype at-sea testing is expected in mid-2015.
As stated in DARPA’s press release, the goal of the program is an “unmanned vessel that tracks quiet diesel electric submarines for months at a time spanning thousands of kilometers of ocean with minimal human input.” The website adds that an objective of generating a vessel design that “exceeds state-of-the art platform performance to provide complete propulsive overmatch against diesel electric submarines at a fraction of their size and cost.” In other words the vessel must be small and cheap (target cost goal of $20M apiece), yet robust enough to operate for 80 days and 6,200km without human maintainers or refueling. 
The approach the program takes for propulsion will be interesting to see develop, as most long-range drone concepts have relied on solar panels or wave propulsion at the sacrifice of top speeds. Part of ACTUV’s endurance and speed will come from the drone’s design. According to navaldrones.com, the SAIC-built concept’s use a trimaran hull seen (see the video) offers better speeds over long ranges than traditional monohull designs. Additionally, going sans-crew frees up space normally devoted to crew-support systems to fill with more fuel tanks. 
Hunting its prey, the ACTUV will have an edge during lower sea-state levels and due to the necessity of diesel electric subs to snorkel with regularity. High sea-states and advanced air-independent propulsion (AIP) diesel subs pose a greater challenge, although the former is mitigated by the lack of crew-safety requirements (no need to worry about the wardroom’s pitchers of kool-aid flying into SUPPO’s lap). 
As discussed in previous posts on our site, increasing a drone’s level of autonomy as DARPA intends with the ACTUV – through “a sparse remote supervisory control model” – will decrease its susceptibility to hacking. However the need for two-way contact through communication and command protocols will still create vulnerabilities to guard against. The more the ACTUV communicates, especially in transmission, the more it increases the chance of being detected. In fact, although as a smaller vessel it might have a radar cross section akin to a pleasure craft or fishing vessel, its speed, sensor suite, and the simple fact that it’s a surface vessel will probably make it rather easy to detect – especially by the sub it is following. As a whole, this vessel will probably not be that stealthy, more often used in “we don’t care you know we know” type situations. 
Automated responses also create the possibility of a dependable error that an enemy can exploit (think of a video game that freezes every time one particular action is performed). This is a more remote worry as the error would have to unknown or uncorrected by the U.S., be discovered by a foe, and be of practical tactical use (it doesn’t matter much if the ACTUV shuts down when trying to avoid whales if you can’t drive the ACTUV into a whale). 
Another interesting requirement is the need for ACTUV to abide by maritime traffic conventions and legal restrictions. In practice this means preventing it from, say, running over a civilian on a jet ski or straying into protected marine habitats. But the day will come when some unmanned surface or subsurface vehicle does cause damage, and the legal and operational fallout will be quite interesting to watch. 
Lastly, as noted in Aviation week, the ACTUV will not perform organic ASW search functions, but will instead rely on other ASW assets and intel to cue its tracking opportunities. Once acquired, the vessel will use “onboard acoustic, electro-optical, radar and lidar sensors to acquire and follow its submarine target.”
If it proves successful, the ultimate benefit of an ACTUV follow-on is therefore that it will free up more expensive assets to do other things. As configured, an engagement would require integration with a weapon-delivery platform, most practically an aircraft. However, like the predator, which made its debut as a strictly ISR platform, a future iterations could quite conceivably carry their own weapons. The ACTUV is a program to keep an eye on. 
Reposted with permission from The Center for International Maritime Security.

SAIC Awarded DARPA Contract to Build Anti-submarine Warfare Drone
22 August 2012 - The Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) is a DARPA Tactical Technology Office project to develop an autonomous surface vehicle. The program’s objective is to detect, track, and classify diesel electric submarines during long duration missions of 60-90 days with no human maintenance or presence required. On August 14, Science Applications International was awarded a $58 million contract to perform Phases 2-4 of the program, which include design, construction, and operational testing. 
The SAIC-proposed prototype will carry a sensor suite comprised of sonar, electro-optical imagers, radar, and lidar to navigate, avoid obstacles, and carry out its operational missions. Scott Littlefield, DARPA’s program manager, notes that the vessel will include “advanced software, robust autonomy for safe operations in accordance with maritime laws, and innovative sensors to continuously track the quietest of submarine targets.” Similar to Austal’s LCS 2 design, the craft’s tri-maran hull offers high speed and a longer unrefueled range than an equivalent sized monohull. Story continues below video.
SAIC Video: Unmanned Autonomous Vessels
The proliferation of quiet diesel and air independent propulsion submarines around the world are driving requirements for more affordable ASW platforms. More than 39 countries operate diesel submarines, which can be acquired for only a few hundred million dollars, a bargain in naval terms.
In addition to the anti-submarine warfare mission, SAIC’s modular USVs are envisioned to support ISR, mine countermeasures, and communications relay functions. An operational prototype is expected to begin at-sea testing in mid-2015.

comments powered by Disqus

No comments:

Post a Comment